LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mouse intestinal niche cells express a distinct &agr;1,2-fucosylated glycan recognized by a lectin from Burkholderia cenocepacia

Photo by dipaccicoffeeco from unsplash

In this study, we examined the distribution of fucosylated glycans in mouse intestines using a lectin, BC2LCN (N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia), as a probe. BC2LCN… Click to show full abstract

In this study, we examined the distribution of fucosylated glycans in mouse intestines using a lectin, BC2LCN (N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia), as a probe. BC2LCN is specific for glycans with a terminal FucĪ±1,2GalĪ²1,3-motif and it is a useful marker for discriminating the undifferentiated status of human induced/embryonic stem cells. Apparent BC2LCN reactivity was detected in the secretory granules of goblet cells in the ileum but not those in the colon. We also found distinctive reactivity in the crypt bottom, which is known as the stem cell zone, of the colon and the ileum. Other lectins for fucosylated glycans, including Ulex europaeus agglutinin-I, Pholiota squarrosa lectin and Aleuria aurantia lectin, did not exhibit similar reactivity in the crypt bottom. Remarkably, BC2LCN-positive epithelial cells could be labeled with a niche cell marker, c-Kit/CD117. Overall, our results indicate that intestinal niche cells express distinct fucosylated glycans recognized by BC2LCN. Increasing evidence suggests that the self-renewal and proliferation of stem cells depend on specific signals derived from niche cells. Our results highlight novel molecular properties of intestinal niche cells in terms of their glycosylation, which may help to understand the regulation of intestinal stem cells. The distinct expression of glycans may reflect the functional roles of niche cells. BC2LCN is a valuable tool for investigating the functional significance of protein glycosylation in stem cell regulation.

Keywords: burkholderia cenocepacia; intestinal niche; lectin; niche; stem; niche cells

Journal Title: Glycobiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.