LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asn-linked oligosaccharide chain of a crenarchaeon, Pyrobaculum calidifontis, is reminiscent of the eukaryotic high-mannose-type glycan

Photo by drew_hays from unsplash

Pyrobaculum calidifontis is a hyperthermophilic archaeon that belongs to the phylum Crenarchaeota. In contrast to the phylum Euryarchaeota, only the N-glycan structure of the genus Sulfolobus is known in Crenarchaeota.… Click to show full abstract

Pyrobaculum calidifontis is a hyperthermophilic archaeon that belongs to the phylum Crenarchaeota. In contrast to the phylum Euryarchaeota, only the N-glycan structure of the genus Sulfolobus is known in Crenarchaeota. Here, we enriched glycoproteins from cultured P. calidifontis cells, by ConA lectin chromatography. The MASCOT search identified proteins with at least one potential N-glycosylation site. The MS/MS analysis of twelve small tryptic glycopeptides confirmed the canonical N-glycosylation consensus in P. calidifontis. We determined the N-linked oligosaccharide structure produced by an in vitro enzymatic oligosaccharyl transfer reaction. P. calidifontis cells were cultured in rich medium supplemented with 13C-glucose, for the metabolic labeling of N-oligosaccharide donors. An incubation with a synthetic peptide substrate produced glycopeptides with isotopically labeled oligosaccharide moieties. The MS and NMR analysis revealed that the P. calidifontis N-glycan has a biantennary, high-mannose-type structure consisting of up to 11 monosaccharide residues. The base portion of the P. calidifontis N-glycan strongly resembles the eukaryotic core structure, α-Man-(1-3)-(α-Man-(1-6)-)β-Man-(1-4)-β-GlcNAc-(1-4)-β-GlcNAc-Asn. Structural differences exist in the anomeric configuration between Man and GlcNAc, and the chitobiose structure is chemically modified: one GlcNAc residue is oxidized to glucoronate, and the GlcNAc residues are both modified with an additional acetamido group at the C-3 position. As a result, the core structure of the P. calidifontis N-glycan is α-Man-(1-3)-(α-Man-(1-6)-)α-Man-(1-4)-β-GlcANAc3NAc-(1-4)-β-GlcNAc3NAc-Asn, in which the unique features of the P. calidifontis N-glycan are underlined. In spite of these differences, the structure of the P. calidifontis N-glycan is the most similar to the eukaryotic counterparts, among all archaeal N- glycans reported to date.

Keywords: linked oligosaccharide; man; pyrobaculum calidifontis; calidifontis glycan; calidifontis; structure

Journal Title: Glycobiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.