LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cytoplasmic TDP-43 is involved in cell fate during stress recovery.

Photo from academic.microsoft.com

TAR DNA binding protein 43 (TDP-43) is an RNA processing protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear TDP-43 mislocalises in patients to… Click to show full abstract

TAR DNA binding protein 43 (TDP-43) is an RNA processing protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear TDP-43 mislocalises in patients to the cytoplasm, where it forms ubiquitin-positive inclusions in affected neurons and glia. Physiologically, cytoplasmic TDP-43 is associated with stress granules (SGs). Here, we explored TDP-43 cytoplasmic accumulation and stress granule formation following osmotic and oxidative stress. We show that sorbitol drives TDP-43 redistribution to the cytoplasm, while arsenite induces the recruitment of cytoplasmic TDP-43 to TIA-1 positive SGs. We demonstrate that inducing acute oxidative stress after TDP-43 cytoplasmic relocalisation by osmotic shock induces PARP cleavage, which triggers cellular toxicity. Recruitment of cytoplasmic TDP-43 to polyribosomes occurs in an SH-SY5Y cellular stress model and is observed in FTD brain lysate. Moreover, the processing body (P-body) marker DCP1a is detected in TDP-43 granules during recovery from stress. Overall, this study supports a central role for cytoplasmic TDP-43 in controlling protein translation in stressed cells.

Keywords: recovery; tdp; stress; tdp involved; involved cell; cytoplasmic tdp

Journal Title: Human molecular genetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.