LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mitochondrial energetics is impaired in very long-chain acyl-CoA dehydrogenase deficiency and can be rescued by treatment with mitochondria-targeted electron scavengers

Photo by hollymindrup from unsplash

Abstract Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common defect of mitochondrial long-chain fatty acid β-oxidation. Patients present with heterogeneous clinical phenotypes affecting heart, liver and skeletal muscle… Click to show full abstract

Abstract Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common defect of mitochondrial long-chain fatty acid β-oxidation. Patients present with heterogeneous clinical phenotypes affecting heart, liver and skeletal muscle predominantly. The full pathophysiology of the disease is unclear and patient response to current therapeutic regimens is incomplete. To identify additional cellular alterations and explore more effective therapies, mitochondrial bioenergetics and redox homeostasis were assessed in VLCAD-deficient fibroblasts, and several protective compounds were evaluated. The results revealed cellular and tissue changes, including decreased respiratory chain (RC) function, increased reactive oxygen species (ROS) production and altered mitochondrial function and signaling pathways in a variety of VLCAD-deficient fibroblasts. The mitochondrially enriched electron and free radical scavengers JP4-039 and XJB-5-131 improved RC function and decreased ROS production significantly, suggesting that they are viable candidate compounds to further develop to treat VLCAD-deficient patients.

Keywords: coa dehydrogenase; chain; acyl coa; long chain; chain acyl

Journal Title: Human Molecular Genetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.