LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262.

Photo from wikipedia

Hyperphosphorylation of the microtubule-associated protein tau is associated with many neurodegenerative diseases, including Alzheimer's disease. Microtubule affinity-regulating kinases (MARK) 1-4 and cyclin-dependent kinase 5 (Cdk5) are tau kinases under physiological… Click to show full abstract

Hyperphosphorylation of the microtubule-associated protein tau is associated with many neurodegenerative diseases, including Alzheimer's disease. Microtubule affinity-regulating kinases (MARK) 1-4 and cyclin-dependent kinase 5 (Cdk5) are tau kinases under physiological and pathological conditions. However, their functional relationship remains elusive. Here, we report a novel mechanism by which Cdk5 activates MARK4 and augments tau phosphorylation, accumulation, and toxicity. MARK4 is highly phosphorylated at multiple sites in the brain and in cultured neurons, and inhibition of Cdk5 activity reduces phosphorylation levels of MARK4. MARK4 is known to be activated by phosphorylation at its activation loop by liver kinase B1 (LKB1). In contrast, Cdk5 increased phosphorylation of MARK4 in the spacer domain, but not in the activation loop, and enhanced its kinase activity, suggesting a novel mechanism by which Cdk5 regulates MARK4 activity. We also demonstrated that co-expression of Cdk5 and MARK4 in mammalian cultured cells significantly increased the levels of tau phosphorylation at both Cdk5 target sites (SP/TP sites) and MARK target sites (Ser262), as well as the levels of total tau. Furthermore, using a Drosophila model of tau toxicity, we demonstrated that Cdk5 promoted tau accumulation and tau-induced neurodegeneration via increasing tau phosphorylation levels at Ser262 by a fly ortholog of MARK, Par-1. This study suggests a novel mechanism by which Cdk5 and MARK4 synergistically increase tau phosphorylation and accumulation, consequently promoting neurodegeneration in disease pathogenesis.

Keywords: accumulation; activity; cdk5; tau phosphorylation; phosphorylation

Journal Title: Human molecular genetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.