LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators

Photo by imwilliamwilliams from unsplash

Abstract Overexpression and knockout (or knockdown) of gene of interest are two commonly used strategies for gene functional study. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system-mediated gene knockout has… Click to show full abstract

Abstract Overexpression and knockout (or knockdown) of gene of interest are two commonly used strategies for gene functional study. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system-mediated gene knockout has been applied in most plant species, including grapevine. However, CRISPR/dCas9 (deactivated Cas9)-based transcriptional activation is still unreported in fruit crops, although a few studies have been documented in Arabidopsis and rice. Here, we tested two transcriptional activators VP64 and TV for transcriptional activation of endogenous genes in grape. Both the dCas9-VP64 and dCas9-TV systems are efficient enough for transcriptional activation of the UDP-glucose flavonoid glycosyltransferases (UFGT) gene in grape cells. The effectiveness of the dCas9-VP64 system in UFGT activation was about 1.6- to 5.6-fold, while the efficiency of the dCas9-TV system was around 5.7- to 7.2-fold. Moreover, in grapevine plants, highly efficient activation of the cold-responsive transcription factor gene CBF4 was achieved by using the dCas9-TV system. The expression of CBF4 was increased 3.7- to 42.3-fold in transgenic plants. Compared with the wild-type plants, the CBF4-activated plants exhibited lower electrolyte leakage after cold treatment. Our results demonstrate the effectiveness of the dCas9-VP64 and dCas9-TV systems in gene activation in grape, which will facilitate application of transcriptional activation in this economically important species.

Keywords: grape; activation; based transcriptional; gene; dcas9; crispr dcas9

Journal Title: Horticulture Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.