LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya

Photo by charlesdeluvio from unsplash

Abstract Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear.… Click to show full abstract

Abstract Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear. Papaya has three sex types, which is genetically determined and epigenetically regulated, and was chosen as a model to study sex differentiation. Bisulfite sequencing of genomic DNA extracted from early-stage flowers revealed sex-specific genomic methylation landscapes and seasonally methylome reprogramming processes in dioecious and gynodioecious papaya grown in spring and summer. Extensive methylation of sex-determining region (SDR) was the distinguishing epigenetic characteristics of nascent XY sex chromosomes in papaya. Seasonal methylome reprogramming of early-stage flowers in both dioecy and gynodioecy systems were detected, resulting from transcriptional expression pattern alterations of methylation-modification-related and chromatin-remodeling-related genes, particularly from those genes involved in active demethylation. Genes involved in phytohormone signal transduction pathway in male flowers have played an important role in the formation of male-specific characteristics. These findings enhanced the understanding of the genetic and epigenetic contributions to sex differentiation and the complexity of sex chromosome evolution in trioecious plants.

Keywords: gynodioecious papaya; methylation; sex; sex differentiation; dioecious gynodioecious

Journal Title: Horticulture Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.