Abstract Plant secondary metabolites make a great contribution to the agricultural and pharmaceutical industries. Their accumulation is determined by the integrated transport of target compounds and their biosynthesis-related RNA, protein,… Click to show full abstract
Abstract Plant secondary metabolites make a great contribution to the agricultural and pharmaceutical industries. Their accumulation is determined by the integrated transport of target compounds and their biosynthesis-related RNA, protein, or DNA. However, it is hard to track the movement of these biomolecules in vivo. Grafting may be an ideal method to solve this problem. The differences in genetic and metabolic backgrounds between rootstock and scion, coupled with multiple omics approaches and other molecular tools, make it feasible to determine the movement of target compounds, RNAs, proteins, and DNAs. In this review, we will introduce methods of using the grafting technique, together with molecular biological tools, to reveal the differential accumulation mechanism of plant secondary metabolites at different levels. Details of the case of the transport of one diterpene alkaloid, fuziline, will be further illustrated to clarify how the specific accumulation model is shaped with the help of grafting and multiple molecular biological tools.
               
Click one of the above tabs to view related content.