LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato

Photo from wikipedia

Abstract Autophagy is a primary process involved in the degradation and reuse of redundant or damaged cytoplasmic components in eukaryotes. Autophagy has been demonstrated to facilitate nutrient recycling and remobilization… Click to show full abstract

Abstract Autophagy is a primary process involved in the degradation and reuse of redundant or damaged cytoplasmic components in eukaryotes. Autophagy has been demonstrated to facilitate nutrient recycling and remobilization by delivering intracellular materials to the vacuole for degradation in plants under nutrient starvation. However, the role of autophagy in nitrogen (N) uptake and utilization remains unknown. Here, we report that the ATG6-dependent autophagic pathway regulates N utilization in tomato (Solanum lycopersicum) under low-nitrogen (LN) conditions. Autophagy-disrupted mutants exhibited weakened biomass production and N accumulation compared with wild-type (WT), while ATG6 overexpression promoted autophagy and biomass production under LN stress. The N content in atg6 mutants decreased while that in ATG6-overexpressing lines increased due to the control of N transporter gene expression in roots under LN conditions. Furthermore, ATG6-dependent autophagy enhanced N assimilation efficiency and protein production in leaves. Nitrate reductase and nitrite reductase activities and expression were compromised in atg6 mutants but were enhanced in ATG6-overexpressing plants under LN stress. Moreover, ATG6-dependent autophagy increased plant carbon fixation and photosynthetic capacity. The quantum yield of photosystem II, photosynthetic N use efficiency and photosynthetic protein accumulation were compromised in atg6 mutants but were restored in ATG6-overexpressing plants. A WT scion grafted onto atg6 mutant rootstock and an atg6 scion grafted onto WT rootstock both exhibited inhibited LN-induced autophagy and N uptake and utilization. Thus, ATG6-dependent autophagy regulates not only N uptake and utilization as well as carbon assimilation but also nutrient recycling and remobilization in tomato plants experiencing LN stress.

Keywords: nitrogen uptake; utilization tomato; tomato; autophagic pathway; uptake utilization; atg6 dependent

Journal Title: Horticulture Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.