LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (Vitis vinifera L. × Vitis davidii Foex.) crossing

Photo from wikipedia

Abstract Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is… Click to show full abstract

Abstract Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of ‘Manicure Finger’ (Vitis vinifera, female) and ‘0940’ (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.

Keywords: grape; vitis; rot resistance; white rot

Journal Title: Horticulture Research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.