LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield

Photo from wikipedia

STUDY QUESTION Are meiotic and developmental competence of human oocytes from small (2-8 mm) antral follicles improved by applying an optimized IVM method involving a prematuration step in presence of… Click to show full abstract

STUDY QUESTION Are meiotic and developmental competence of human oocytes from small (2-8 mm) antral follicles improved by applying an optimized IVM method involving a prematuration step in presence of C-Type Natriuretic Peptide (CNP) followed by a maturation step in presence of FSH and Amphiregulin (AREG)? SUMMARY ANSWER A strategy involving prematuration culture (PMC) in the presence of CNP followed by IVM using FSH + AREG increases oocyte maturation potential leading to a higher availability of Day 3 embryos and good-quality blastocysts for single embryo transfer. WHAT IS KNOWN ALREADY IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for the patients, but the approach is not widely used because of an efficiency gap compared to conventional ART. In vitro systems that enhance synchronization of nuclear and cytoplasmic maturation before the meiotic trigger are crucial to optimize human IVM systems. However, previous PMC attempts have failed in sustaining cumulus-oocyte connections throughout the culture period, which prohibited a normal cumulus-oocyte communication and precluded an adequate response by the cumulus-oocyte complex (COC) to the meiotic trigger. STUDY DESIGN, SIZE, DURATION A first prospective study involved sibling oocytes from a group of 15 patients with polycystic ovary syndrome (PCOS) to evaluate effects of a new IVM culture method on oocyte nuclear maturation and their downstream developmental competence. A second prospective study in an additional series of 15 women with polycystic ovaries characterized and fine-tuned the culture conditions. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifteen women with PCOS (according to Rotterdam criteria) underwent IVM treatment after 3-5 days of highly purified human menopausal gonadotropin (HP-hMG) stimulation and no human chorionic gonadotropin (hCG) trigger before oocyte retrieval. A first study was designed with sibling oocytes to prospectively evaluate the impact of an IVM culture method: 24 h PMC with CNP + 30 h IVM with FSH and AREG, on embryo yield, in comparison to the standard (30 h) IVM clinical protocol (Group I, n = 15). A second prospective study was performed in 15 women with polycystic ovaries, to characterize and optimize the PMC conditions (Group II, n = 15). The latter study involved the evaluation of oocyte meiotic arrest, the preservation of cumulus-oocyte transzonal projections (TZPs), the patterns of oocyte chromatin configuration and cumulus cells apoptosis following the 24 and 46 h PMC. Furthermore, oocyte developmental potential following PMC (24 and 46 h) + IVM was also evaluated. The first 20 good-quality blastocysts from PMC followed by IVM were analysed by next generation sequencing to evaluate their aneuploidy rate. MAIN RESULTS AND THE ROLE OF CHANCE PMC in presence of CNP followed by IVM using FSH and AREG increased the meiotic maturation rate per COC to 70%, which is significantly higher than routine standard IVM (49%; P ≤ 0.001). Hence, with the new system the proportion of COCs yielding transferable Day 3 embryos and good-quality blastocysts increased compared to routine standard IVM (from 23 to 43%; P ≤ 0.001 and from 8 to 18%; P ≤ 0.01, respectively). CNP was able to prevent meiosis resumption for up to 46 h. After PMC, COCs had preserved cumulus-oocyte TZPs. The blastocysts obtained after PMC + IVM did not show increased aneuploidy rates as compared to blastocysts from conventional ART. LIMITATIONS REASONS FOR CAUTION The novel IVM approach in PCOS patients was tested in oocytes derived from small antral follicles which have an intrinsically low developmental potential. Validation of the system would be required for COCs from different (larger) follicular sizes, which may involve further adjustment of PMC conditions. Furthermore, considering that this is a novel strategy in human IVM treatment, its global efficiency needs to be confirmed in large prospective randomized controlled trials. The further application in infertile patients without PCOS, e.g. cancer patients, remains to be evaluated. WIDER IMPLICATIONS OF THE FINDINGS The findings of this pilot study suggest that the efficiency gap between IVM and conventional IVF can be reduced by fine-tuning of the culture methods. This novel strategy opens new perspectives for safe and patient-friendly ART in patients with PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from: the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680); the Fund for Research Flanders (Fonds Wetenschappelijk Onderzoek-Vlaanderen-FWO, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69). The authors have no conflicts of interest.

Keywords: method; pmc; study; cumulus oocyte; ivm

Journal Title: Human Reproduction
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.