Experimentally elevated testosterone (T) often leads to enhanced aggression, with examples across many different species, including both males and females. Indeed, the relationship between T and aggression is among the… Click to show full abstract
Experimentally elevated testosterone (T) often leads to enhanced aggression, with examples across many different species, including both males and females. Indeed, the relationship between T and aggression is among the most well-studied and fruitful areas of research at the intersection of behavioral ecology and endocrinology. This relationship is also hypothesized to be bidirectional (i.e., T influences aggression, and aggression influences T), leading to four key predictions: (1) Individuals with higher T levels are more aggressive than individuals with lower T. (2) Seasonal changes in aggression mirror seasonal changes in T secretion. (3) Aggressive territorial interactions stimulate increased T secretion. (4) Temporary elevations in T temporarily increase aggressiveness. These predictions cover a range of timescales, from a single snapshot in time, to rapid fluctuations, and to changes over seasonal timescales. Adding further complexity, most predictions can also be addressed by comparing among individuals or with repeated sampling within-individuals. In our review, we explore how the spectrum of results across predictions shapes our understanding of the relationship between T and aggression. In all cases, we can find examples of results that do not support the initial predictions. In particular, we find that predictions 1-3 have been tested frequently, especially using an among-individual approach. We find qualitative support for all three predictions, though there are also many studies that do not support predictions 1 and 3 in particular. Prediction 4, on the other hand, is something that we identify as a core underlying assumption of past work on the topic, but one that has rarely been directly tested. We propose that when relationships between T and aggression are individual-specific or condition-dependent, then positive correlations between the two variables may be obscured or reversed. In essence, even though T can influence aggression, many assumed or predicted relationships between the two variables may not manifest. Moving forward, we urge greater attention to understanding how and why it is that these bidirectional relationships between T and aggression may vary among timescales and among individuals. In doing so, we will move towards a deeper understanding on the role of hormones in behavioral adaptation.
               
Click one of the above tabs to view related content.