LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of a new class of rational RBF expansions

Photo by shotsbywolf from unsplash

We propose a new method, namely an eigen-rational kernel-based scheme, for multivariate interpolation via mesh-free methods. It consists of a fractional radial basis function (RBF) expansion, with the denominator depending… Click to show full abstract

We propose a new method, namely an eigen-rational kernel-based scheme, for multivariate interpolation via mesh-free methods. It consists of a fractional radial basis function (RBF) expansion, with the denominator depending on the eigenvector associated to the largest eigenvalue of the kernel matrix. Classical bounds in terms of Lebesgue constants and convergence rates with respect to the mesh size of the eigen-rational interpolant are indeed comparable with those of classical kernel-based methods. However, the proposed approach takes advantage of rescaling the classical RBF expansion providing more robust approximations. Theoretical analysis, numerical experiments and applications support our findings.

Keywords: rbf expansions; rational rbf; class rational; rbf; new class; analysis new

Journal Title: IMA Journal of Numerical Analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.