LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A lowest-order staggered DG method for the coupled Stokes–Darcy problem

Photo from wikipedia

In this paper we propose a locally conservative, lowest-order staggered discontinuous Galerkin method for the coupled Stokes–Darcy problem on general quadrilateral and polygonal meshes. This model is composed of Stokes… Click to show full abstract

In this paper we propose a locally conservative, lowest-order staggered discontinuous Galerkin method for the coupled Stokes–Darcy problem on general quadrilateral and polygonal meshes. This model is composed of Stokes flow in the fluid region and Darcy flow in the porous media region, coupling together through mass conservation, balance of normal forces and the Beavers–Joseph–Saffman condition. Stability of the proposed method is proved. A new regularization operator is constructed to show the discrete trace inequality. Optimal convergence estimates for all the approximations covering low regularity are achieved. Numerical experiments are given to illustrate the performances of the proposed method. The numerical results indicate that the proposed method can be flexibly applied to rough grids such as the trapezoidal grid and $h$-perturbation grid.

Keywords: order staggered; lowest order; method coupled; method; coupled stokes; stokes darcy

Journal Title: Ima Journal of Numerical Analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.