A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that… Click to show full abstract
A compact Fuchsian manifold with boundary is a hyperbolic 3-manifold homeomorphic to $S_g \times [0; 1]$ such that the boundary component $S_g \times \{ 0\}$ is geodesic. We prove that a compact Fuchsian manifold with convex boundary is uniquely determined by the induced path metric on $S_g \times \{1\}$. We do not put further restrictions on the boundary except convexity.
               
Click one of the above tabs to view related content.