An Iwasawa manifold is a compact complex homogeneous manifold isomorphic to a quotient $G/\Lambda $, where $G$ is the group of complex unipotent $3 \times 3$ matrices and $\Lambda \subset… Click to show full abstract
An Iwasawa manifold is a compact complex homogeneous manifold isomorphic to a quotient $G/\Lambda $, where $G$ is the group of complex unipotent $3 \times 3$ matrices and $\Lambda \subset G$ is a cocompact lattice. In this work, we study holomorphic submanifolds in Iwasawa manifolds. We prove that any compact complex curve in an Iwasawa manifold is contained in a holomorphic subtorus. We also prove that any complex surface in an Iwasawa manifold is either an abelian surface or a Kähler non-projective isotrivial elliptic surface of Kodaira dimension one. In the Appendix, we show that any subtorus in Iwasawa manifold carries complex multiplication.
               
Click one of the above tabs to view related content.