LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Standard Poisson Structure and a Frobenius Splitting of the Basic Affine Space

Photo from wikipedia

The goal of this paper is to construct a Frobenius splitting on $G/U$ via the Poisson geometry of $(G/U,\pi _{{{\scriptscriptstyle G}}/{{\scriptscriptstyle U}}})$, where $G$ is a simply connected semi-simple algebraic… Click to show full abstract

The goal of this paper is to construct a Frobenius splitting on $G/U$ via the Poisson geometry of $(G/U,\pi _{{{\scriptscriptstyle G}}/{{\scriptscriptstyle U}}})$, where $G$ is a simply connected semi-simple algebraic group defined over an algebraically closed field of characteristic $p> 3$, $U$ is the uniradical of a Borel subgroup of $G$, and $\pi _{{{\scriptscriptstyle G}}/{{\scriptscriptstyle U}}}$ is the standard Poisson structure on $G/U$. We first study the Poisson geometry of $(G/U,\pi _{{{\scriptscriptstyle G}}/{{\scriptscriptstyle U}}})$. Then we develop a general theory for Frobenius splittings on $\mathbb{T}$-Poisson varieties, where $\mathbb{T}$ is an algebraic torus. In particular, we prove that compatibly split subvarieties of Frobenius splittings constructed in this way must be $\mathbb{T}$-Poisson subvarieties. Lastly, we apply our general theory to construct a Frobenius splitting on $G/U$.

Keywords: standard poisson; poisson; geometry; poisson structure; frobenius splitting

Journal Title: International Mathematics Research Notices
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.