LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanaomycin E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction.

Photo from wikipedia

The Nod-like receptor family pyrin domain containing 3 (NLRP3) is a cytosolic innate immune receptor that senses organelle dysfunction induced by various stimuli, such as infectious, environmental, metabolic, and drug… Click to show full abstract

The Nod-like receptor family pyrin domain containing 3 (NLRP3) is a cytosolic innate immune receptor that senses organelle dysfunction induced by various stimuli, such as infectious, environmental, metabolic, and drug stresses. Upon activation, NLRP3 forms an inflammasome with its adaptor protein apoptosis-associated speck-like protein, containing a caspase recruitment domain (ASC) and caspase-1, to trigger the release of inflammatory cytokines. The development of effective anti-inflammatory drugs targeting the NLRP3 inflammasome is in high demand as its aberrant activation often causes inflammatory diseases. Here, we found that nanaomycin A (NNM-A), a quinone-based antibiotic isolated from Streptomyces, effectively inhibited NLRP3 inflammasome-mediated inflammatory responses induced by imidazoquinolines, including imiquimod. Interestingly, its epoxy derivative nanaomycin E (NNM-E) showed a comparable inhibitory effect against the NLRP3 inflammasome-induced release of interleukin (IL)-1β and IL-18 from macrophages, with a much lower toxicity than NNM-A. NNM-E inhibited ASC oligomerization and caspase-1 cleavage, both of which are hallmarks of NLRP3 inflammasome activation. NNM-E reduced mitochondrial damage and the production of reactive oxygen species, thereby preventing the activation of the NLRP3 inflammasome. NNM-E treatment markedly alleviated psoriasis-like skin inflammation induced by imiquimod. Collectively, NNM-E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction with little toxicity and showed an anti-inflammatory effect in vivo. Thus, NNM-E could be a potential lead compound for developing effective and safe anti-inflammatory agents for the treatment of NLRP3 inflammasome-mediated inflammatory diseases.

Keywords: activation preventing; dysfunction; inflammasome activation; inhibits nlrp3; activation; nlrp3 inflammasome

Journal Title: International immunology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.