LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determining &bgr;-lactam exposure threshold to suppress resistance development in Gram-negative bacteria

Photo from wikipedia

Objectives β-Lactams are commonly used for nosocomial infections and resistance to these agents among Gram-negative bacteria is increasing rapidly. Optimized dosing is expected to reduce the likelihood of resistance development… Click to show full abstract

Objectives β-Lactams are commonly used for nosocomial infections and resistance to these agents among Gram-negative bacteria is increasing rapidly. Optimized dosing is expected to reduce the likelihood of resistance development during antimicrobial therapy, but the target for clinical dose adjustment is not well established. We examined the likelihood that various dosing exposures would suppress resistance development in an in vitro hollow-fibre infection model. Methods Two strains of Klebsiella pneumoniae and two strains of Pseudomonas aeruginosa (baseline inocula of ∼10 8  cfu/mL) were examined. Various dosing exposures of cefepime, ceftazidime and meropenem were simulated in the hollow-fibre infection model. Serial samples were obtained to ascertain the pharmacokinetic simulations and viable bacterial burden for up to 120 h. Drug concentrations were determined by a validated LC-MS/MS assay and the simulated exposures were expressed as C min /MIC ratios. Resistance development was detected by quantitative culture on drug-supplemented media plates (at 3× the corresponding baseline MIC). The C min /MIC breakpoint threshold to prevent bacterial regrowth was identified by classification and regression tree (CART) analysis. Results For all strains, the bacterial burden declined initially with the simulated exposures, but regrowth was observed in 9 out of 31 experiments. CART analysis revealed that a C min /MIC ratio ≥3.8 was significantly associated with regrowth prevention (100% versus 44%, P  = 0.001). Conclusions The development of β-lactam resistance during therapy could be suppressed by an optimized dosing exposure. Validation of the proposed target in a well-designed clinical study is warranted.

Keywords: gram negative; negative bacteria; resistance; resistance development; suppress resistance; development

Journal Title: Journal of Antimicrobial Chemotherapy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.