LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The complete nucleotide sequence of an IncP-2 megaplasmid unveils a mosaic architecture comprising a putative novel blaVIM-2-harbouring transposon in Pseudomonas aeruginosa

Photo from wikipedia

Objectives In Pseudomonas aeruginosa , bla VIM-2 has been mostly associated with a chromosomal location and rarely with a plasmid backbone. Until now, only three complete bla VIM-2 -carrying plasmid… Click to show full abstract

Objectives In Pseudomonas aeruginosa , bla VIM-2 has been mostly associated with a chromosomal location and rarely with a plasmid backbone. Until now, only three complete bla VIM-2 -carrying plasmid sequences have been described in this species. Here we explore the modular structure of pJB37, the first bla VIM-2 -carrying megaplasmid described in P. aeruginosa . Methods The complete nucleotide sequence of plasmid pJB37 was determined with an Illumina HiSeq, with de novo assembly by SPAdes, annotation by RAST and searching for antimicrobial resistance genes and virulence factors. Conjugation assays were conducted. Results Megaplasmid pJB37 (464 804 bp long and GC content of 57.2%) comprised: an IncP-2 repA-oriV-parAB region; a conjugative transfer region ( traF , traG , virD2 and trbBCDEJLFGI genes); Tn 6356 , a new putative bla VIM-2 -carrying transposon; heavy metal (mercury and tellurite) resistance operons; and an arsenal of virulence genes. Plasmid pJB37 was transferable by conjugation to a spontaneous rifampicin-resistant mutant of P. aeruginosa PAO1. Here, a bla VIM-2 -harbouring In58 integron was associated with a new complex transposable structure, herein named Tn 6356 , suggesting that In58 was most likely acquired by insertion of this element. Conclusions The mosaic arrangement exhibited by the pJB37 IncP-2 megaplasmid, which highlights the vast assembly potential of distinct genetic elements in a Pseudomonas widespread plasmid platform, gives new insights into bacterial adaptation and evolution.

Keywords: nucleotide sequence; pseudomonas aeruginosa; complete nucleotide; incp megaplasmid; vim; bla vim

Journal Title: Journal of Antimicrobial Chemotherapy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.