LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linezolid as treatment for pulmonary Mycobacterium avium disease

Photo from wikipedia

Objectives To identify the pharmacokinetic/pharmacodynamic parameters and exposures of linezolid in the treatment of pulmonary Mycobacterium avium complex (MAC) disease. Methods Human-derived monocytes infected with MAC were inoculated into hollow-fibre… Click to show full abstract

Objectives To identify the pharmacokinetic/pharmacodynamic parameters and exposures of linezolid in the treatment of pulmonary Mycobacterium avium complex (MAC) disease. Methods Human-derived monocytes infected with MAC were inoculated into hollow-fibre systems for dose-effect and dose-scheduling studies. We mimicked linezolid concentration-time profiles achieved in adult human lungs treated for 28 days. Sampling to confirm that the intended linezolid pharmacokinetics had been achieved, and for enumeration of MAC colony-forming units, was performed based on repetitive sampling from each system over the 28 days. We then performed 10 000 patient Monte Carlo simulations to identify doses associated with optimal effect in the clinic. Results Linezolid achieved a hitherto unprecedented feat of at least 1.0 log10 cfu/mL reduction. Efficacy was most closely linked to the AUC0-24/MIC ratio. The AUC0-24/MIC ratio associated with no change in bacterial burden or bacteriostasis was 7.82, while that associated with 1.0 log10 cfu/mL kill was 42.06. The clinical dose of 600 mg/day achieved or exceeded the bacteriostasis exposure in 98.73% of patients. The proportion of 10 000 patients treated with the standard 1200 mg/day who achieved the exposure for 1.0 log10 cfu/mL kill was 70.64%, but was 90% for 1800 mg/day. The proposed MIC breakpoint for linezolid is 16 mg/L, with which 49%-80% of clinical isolates would be considered resistant. Conclusions Linezolid is associated with a bactericidal effect in pulmonary MAC that is greater than that seen with other recommended drugs. However, because of the MIC distribution, doses that would optimize the bactericidal effect would be associated with a high adverse event rate.

Keywords: treatment pulmonary; pulmonary mycobacterium; linezolid treatment; mycobacterium avium

Journal Title: Journal of Antimicrobial Chemotherapy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.