LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disruption of the sensor kinase phoQ gene decreases acid resistance in plant growth-promoting rhizobacterium Rahnella aquatilis HX2.

Photo from wikipedia

AIMS Rahnella aquatilis HX2, a promising plant growth-promoting rhizobacterium (PGPR) in the field, contains genes homologous to the PhoP/PhoQ two-component regulatory system. Although this system regulates stress response in numerous… Click to show full abstract

AIMS Rahnella aquatilis HX2, a promising plant growth-promoting rhizobacterium (PGPR) in the field, contains genes homologous to the PhoP/PhoQ two-component regulatory system. Although this system regulates stress response in numerous pathogens, PhoP/PhoQ characterization in a PGPR has not received in-depth exploration. METHODS AND RESULTS The phoQ gene was mutated in strain HX2 using an in-frame deletion strategy. Compared to the wild type, the phoQ mutant exhibited increased sensitivity to acidic conditions (pH 4.0) in a chemically defined medium and in mild acidic natural soil (pH 5.7). The phoQ mutant also exhibited increased swimming motility under acidic conditions. Acid resistance was restored in the mutant by introducing the phoQ gene on a plasmid. Three acid resistance genes, add, cfa, and fur were downregulated significantly, whereas the chaperone encoding gene, dnak, was upregulated when the phoQ mutant was exposed to acid stress. CONCLUSIONS This study suggested that the PhoP/PhoQ system positively regulates the acid resistance of R. aquatilis HX2.

Keywords: phoq gene; aquatilis hx2; acid resistance; phoq

Journal Title: Journal of applied microbiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.