LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetic and phenotypic parameters for feed efficiency and component traits in American mink.

Photo from wikipedia

Feed cost is the largest expense of mink production systems, and therefore, improvement of feed efficiency (FE) through selection for high feed efficient mink is a practical way to increase… Click to show full abstract

Feed cost is the largest expense of mink production systems, and therefore, improvement of feed efficiency (FE) through selection for high feed efficient mink is a practical way to increase the mink industry's sustainability. In this study, we estimated the heritability, phenotypic and genetic correlations for different FE measures and component traits, including harvest weight (HW), harvest length (HL), final body length (FBL), final body weight (FBW), average daily gain (ADG), daily feed intake (DFI), feed conversion ratio (FCR), residual feed intake (RFI), residual gain (RG), residual intake and gain (RIG), and Kleiber ratio (KR), using data from 2,288 American mink (for HW and HL), and 1,038-1,906 American mink (for other traits). Significance (P < 0.05) of fixed effects (farm, sex, and color-type), a covariate (age of animal), and random effects (additive genetic, maternal, and common litter) were evaluated through univariate models implemented in ASReml-R version 4. Genetic parameters were estimated via fitting a set of bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.28±0.06, 0.23±0.06, 0.28±0.10, 0.27±0.11, 0.25±0.09, 0.26±0.09, 0.20±0.09, 0.23±0.09, 0.21±0.10, 0.25±0.10, and 0.26±0.10 for HW, HL, FBL, FBW, ADG, DFI, FCR, RFI, RG, RIG, and KR, respectively. RIG had favorable genetic correlations with DFI (-0.62±0.24) and ADG (0.58±0.21), and non-significant (P > 0.05) genetic correlations with FBW (0.14±0.31) and FBL (-0.15±0.31). These results revealed that RIG might be superior trait as it guarantees reduced feed intake with faster-growing mink yet with no negative impacts on body weight and length. In addition, the strong positive genetic correlations (±SE) between KR with component traits (0.88±0.11 with FBW; 0.68±0.17 with FBL; and 0.97±0.02 with ADG) suggested KR as an applicable indirect measure of FE for improvement of component traits as it did not require the individual feed intake to be measured. Overall, our results confirmed the possibility of including FE traits in mink breeding programs to effectively select feed-efficient animals.

Keywords: mink; american mink; component traits; feed efficiency

Journal Title: Journal of animal science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.