LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet.

Photo by neonbrand from unsplash

The objective of this study was to investigate the effects of adding engineered biocarbon to a high-forage diet on ruminal fermentation, nutrient digestion, and enteric methane (CH4) production in a… Click to show full abstract

The objective of this study was to investigate the effects of adding engineered biocarbon to a high-forage diet on ruminal fermentation, nutrient digestion, and enteric methane (CH4) production in a semi-continuous culture artificial rumen system (RUSITEC). The experiment was a completely randomized block design with four treatments assigned to sixteen fermentation vessels (four/treatment) in two RUSITEC apparatuses. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal, and 3% supplement (DM basis) with biocarbon added at 0, 0.5, 1, and 2% of substrate DM. The study period was 17 d, with a 10-d adaptation and 7-d sample collection period. Increasing biocarbon linearly increased (P < 0.05) disappearance of DM, OM, CP, ADF and NDF. Compared to control, increasing biocarbon enhanced (P < 0.01) production of total VFA, acetate, propionate, branch-chained VFAs, and tended to increase (P = 0.06) NH3-N. Microbial protein synthesis linearly increased (P = 0.01) with increasing biocarbon. Addition of biocarbon reduced overall CH4 production compared with the control (P ≤ 0.05). There were no differences (P > 0.05) in production of total gas, large or small peptides, or in the number of protozoa as a result of addition of biocarbon to the diet. Addition of biocarbon to a forage diet increased DM digestibility by up to 2%, while lowering enteric CH4 production and enhancing microbial protein synthesis in in vitro semi- continuous culture fermenters.

Keywords: microbial protein; production; forage diet; protein synthesis; biocarbon

Journal Title: Journal of animal science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.