Abstract Hyphantria cunea Drury (Lepidoptera: Erebidae) is a quarantine pest in China that can cause damage to hundreds of plants. As biological control agents, Nuclear Polyhedrosis Virus (NPV) and Bacillus… Click to show full abstract
Abstract Hyphantria cunea Drury (Lepidoptera: Erebidae) is a quarantine pest in China that can cause damage to hundreds of plants. As biological control agents, Nuclear Polyhedrosis Virus (NPV) and Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) are commonly used to inhibit the prevalence of H. cunea. To investigate the role of midgut bacteria in the infection of NPV and Bt in H. cunea, we performed a series of tests, including isolating the dominant culturable bacteria in the midgut, eliminating intestinal bacteria, and respectively inoculating the dominant strains with NPV and Bt for bioassay. Two dominant bacteria, Klebsiella oxytoca Lautrop (Enterobacterales: Enterobacteriaceae) and Enterococcus mundtii Collins (Lactobacillales: Enterococcaceae), in the midgut of H. cunea were identified, and a strain of H. cunea larvae without intestinal bacteria was successfully established. In the bioassays of entomopathogen infection, K. oxytoca showed significant synergistic effects with both NPV and Bt on the death of H. cunea. In contrast, E. mundtii played antagonistic effects. This phenomenon may be attributed to the differences in the physico-chemical properties of the two gut bacteria and the alkaline environment required for NPV and Bt to infect the host. It is worth noting that the enhanced insecticidal activity of K. oxytoca on NPV and Bt provides a reference for future biological control of H. cunea by intestinal bacteria.
               
Click one of the above tabs to view related content.