LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae)

Photo by fabiooulucas from unsplash

Abstract Traits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as… Click to show full abstract

Abstract Traits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as increased melanization can result in greater heat retention. The thermal melanism hypothesis predicts that species with developmental plasticity will have darker pigmentation in colder environments, which can be an important adaptation for temperate species experiencing seasonal variation in climate. The harlequin bug (Murgantia histrionica, Hemiptera: Pentatomidae, Hahn 1834) is a widespread invasive crop pest with variable patterning where developmental plasticity in melanization could affect performance. To investigate the impact of temperature and photoperiod on melanization and size, nymphs were reared under two temperatures and two photoperiods simulating summer and fall seasons. The size and degree of melanization of adults were quantified using digital imagery. To assess the effect of coloration on the amount of heat absorption, we monitored the temperature of adults in a heating experiment. Overall, our results supported the thermal melanism hypothesis and temperature had a comparatively larger effect on coloration and size than photoperiod. When heated, the body temperature of individuals with darker pigmentation increased more relative to the ambient air temperature than individuals with lighter pigmentation. These results suggest that colder temperatures experienced late in the season can induce developmental plasticity for a phenotype that improves thermoregulation in this species. Our work highlights environmental signals and consequences for individual performance due to thermal melanism in a common invasive species, where capacity to respond to changing environments is likely contributing to its spread.

Keywords: temperature; developmental plasticity; physiology; harlequin bug; pigmentation; plasticity

Journal Title: Journal of Insect Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.