LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Changes in aboveground locomotion of a scansorial opossum associated to habitat fragmentation

Photo from wikipedia

Habitat fragmentation may affect animal movement patterns due to changes in intra- and interspecific interactions as well as in habitat quality and structure. Although the effects of habitat fragmentation on… Click to show full abstract

Habitat fragmentation may affect animal movement patterns due to changes in intra- and interspecific interactions as well as in habitat quality and structure. Although the effects of habitat fragmentation on terrestrial movements are relatively well-known, it is unclear whether and how they affect aboveground locomotion of individuals. We compared aboveground locomotion of a Neotropical small mammal, the gray four-eyed opossum, Philander quica, between two forest fragments and two areas of continuous forest in the Brazilian Atlantic Forest. We 1) quantified support availability and tested for active selection of different support diameters and inclinations by individuals; and 2) compared support diameters and inclinations used (observed values) among areas and between males and females. Both males and females selected supports based on diameters and inclinations in forest fragments. In continuous forests sites, females selected supports based on diameters and inclinations, but males selected only support diameters. Frequency of support diameter use differed significantly between forest fragments and continuous forest sites and between males and females. Frequency of support inclination use differed significantly between areas only for females, and between sexes only in continuous forest sites. Sex-related differences in support selection and use are likely related to differences in body size and conflicting energetic and behavioral demands related to use of arboreal space. Site-related differences in aboveground movements likely reflect the effects of forest edges that result in increased use of thinner supports in forest fragments. These results complement our previous findings that habitat fragmentation reduces daily home ranges and increases the total amount of aboveground locomotion of P. quica, and provide a more thorough picture of how forest-dependent species are able to use and persist in small forest fragments.

Keywords: habitat fragmentation; forest fragments; support; aboveground locomotion

Journal Title: Journal of Mammalogy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.