LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deacetylation of MTHFD2 by SIRT4 senses stress signal to inhibit cancer cell growth by remodeling folate metabolism

Photo from wikipedia

Abstract Folate metabolism plays an essential role in tumor development. Various cancers display therapeutic response to reagents targeting key enzymes of the folate cycle, but obtain chemoresistance later. Therefore, novel… Click to show full abstract

Abstract Folate metabolism plays an essential role in tumor development. Various cancers display therapeutic response to reagents targeting key enzymes of the folate cycle, but obtain chemoresistance later. Therefore, novel targets in folate metabolism are highly demanded. Methylenetetrahydrofolate dehydrogenase/methylenetetrahydrofolate cyclohydrolase 2 (MTHFD2) is one of the key enzymes in folate metabolism and its expression is highly increased in multiple human cancers. However, the underlying mechanism that regulates MTHFD2 expression remains unknown. Here, we elucidate that SIRT4 deacetylates the conserved lysine 50 (K50) residue in MTHFD2. K50 deacetylation destabilizes MTHFD2 by elevating cullin 3 E3 ligase-mediated proteasomal degradation in response to stressful stimuli of folate deprivation, leading to suppression of nicotinamide adenine dinucleotide phosphate production in tumor cells and accumulation of intracellular reactive oxygen species, which in turn inhibits the growth of breast cancer cells. Collectively, our study reveals that SIRT4 senses folate availability to control MTHFD2 K50 acetylation and its protein stability, bridging nutrient/folate stress and cellular redox to act on cancer cell growth.

Keywords: metabolism; cell; growth; folate metabolism; mthfd2; cancer

Journal Title: Journal of Molecular Cell Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.