LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ecology of Eastern Equine Encephalitis Virus in the Southeastern United States: Incriminating Vector and Host Species Responsible for Virus Amplification, Persistence, and Dispersal.

Photo by fusion_medical_animation from unsplash

Eastern equine encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) is a mosquito-borne pathogen found in eastern North America that causes severe disease in humans and horses. The mosquito Culiseta melanura… Click to show full abstract

Eastern equine encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) is a mosquito-borne pathogen found in eastern North America that causes severe disease in humans and horses. The mosquito Culiseta melanura (Coquillett) (Diptera: Culicidae) is the primary enzootic vector of EEEV throughout eastern North America while several mosquito species belonging to diverse genera serve as bridge vectors. The ecology of EEEV differs between northern and southern foci, with respect to phenology of outbreaks, important vertebrate hosts, and bridge vector species. Active transmission is limited to roughly half of the year in northern foci (New York, New Hampshire, Massachusetts, Connecticut), while year-round transmission occurs in the southeastern region (particularly Florida). Multiple phylogenetic analyses indicate that EEEV strains circulating in northern foci are likely transported from southern foci by migrating birds. Bird species that overwinter or migrate through Florida, are bitten by Cs. melanura in late spring, and arrive at northern breeding grounds in May are the most likely candidates to disperse EEEV northward. Available data indicate that common yellowthroat and green heron satisfy these criteria and could serve as virus dispersers. Understanding the factors that drive the phenology of Cs. melanura reproduction in the south and the timing of avian migration from southern foci could provide insight into how confluence of these biological phenomena shapes outbreaks of EEE throughout its range. This information could be used to develop models predicting the likelihood of outbreaks in a given year, allowing vector control districts to more efficiently marshal resources necessary to protect their stakeholders.

Keywords: equine encephalitis; vector; encephalitis virus; eastern equine; phenology; ecology

Journal Title: Journal of medical entomology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.