LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Germline sequencing DNA repair genes in 5,545 men with aggressive and non-aggressive prostate cancer.

Photo from wikipedia

BACKGROUND There is an urgent need to identify factors specifically associated with aggressive prostate cancer (PCa) risk. We investigated whether rare pathogenic, likely pathogenic, or deleterious (P/LP/D) germline variants in… Click to show full abstract

BACKGROUND There is an urgent need to identify factors specifically associated with aggressive prostate cancer (PCa) risk. We investigated whether rare pathogenic, likely pathogenic, or deleterious (P/LP/D) germline variants in DNA repair genes are associated with aggressive PCa risk in a case-case study of aggressive versus non-aggressive disease. METHODS Participants were 5,545 European-ancestry men, including 2,775 non-aggressive and 2,770 aggressive PCa cases, which included 467 metastatic cases (16.9%). Samples were assembled from 12 international studies and germline sequenced together. Rare (minor allele frequency<0.01) P/LP/D variants were analyzed for 155 DNA repair genes. We compared single variant, gene-based, and DNA repair pathway-based burdens by disease aggressiveness. All statistical tests are two-sided. RESULTS BRCA2 and PALB2 had the most statistically significant gene-based associations, with 2.5% of aggressive and 0.8% of non-aggressive cases carrying P/LP/D BRCA2 alleles (OR = 3.19, 95% CI = 1.94 to 5.25, P = 8.58x10-7) and 0.65% of aggressive and 0.11% of non-aggressive cases carrying P/LP/D PALB2 alleles (OR = 6.31, 95% CI = 1.83 to 21.68, P = 4.79x10-4). ATM had a nominal association, with 1.6% of aggressive and 0.8% of non-aggressive cases carrying P/LP/D ATM alleles (OR = 1.88, 95% CI = 1.10 to 3.22, P=.02). In aggregate, P/LP/D alleles within 24 literature-curated candidate PCa DNA repair genes were more common in aggressive than non-aggressive cases (carrier frequencies=14.2% versus 10.6%, respectively; P = 5.56x10-5). However, this difference was statistically non-significant (P=.18) upon excluding BRCA2, PALB2, and ATM. Among these 24 genes, P/LP/D carriers had a 1.06-year younger diagnosis age (95% CI=-1,65 to 0.48, P = 3.71x10-4). CONCLUSIONS Risk conveyed by DNA repair genes is largely driven by rare P/LP/D alleles within BRCA2, PALB2, and ATM. These findings support the importance of these genes in both screening and disease management considerations.

Keywords: repair genes; aggressive non; dna repair; non aggressive

Journal Title: Journal of the National Cancer Institute
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.