LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Changes in soil microbial community structure and function following degradation in a temperate grassland

Photo by voneciacarswell from unsplash

Grassland degradation represents a major challenge in the maintenance of grassland productivity. This process has dramatic impacts on energy flows and soil nutrient dynamics, thus directly or indirectly influencing soil… Click to show full abstract

Grassland degradation represents a major challenge in the maintenance of grassland productivity. This process has dramatic impacts on energy flows and soil nutrient dynamics, thus directly or indirectly influencing soil microbes. Here, we aim to (i) examine changes in soil microbial composition, diversity and functionality in response to different levels of grassland degradation (i.e. non-degraded, moderately and severely degraded) in a temperate grassland in Inner Mongolia, and (ii) elucidate biotic and abiotic factors that are responsible for these changes. The composition structure of soil microbial community was determined by high-throughput sequencing. The functionality of bacterial communities was examined using the tool of FAPROTAX, and functional guilds of fungal communities were quantified using the FUNGuild pipeline. Grassland degradation significantly decreased soil bacterial diversity but it did not affect fungal diversity. Belowground biomass, soil organic carbon and total nitrogen were positively related to changes in diversity of bacterial community. Grassland degradation significantly increased the relative abundance of Chloroflexi (from 2.48% to 8.40%) and decreased Firmicutes (from 3.62% to 1.08%) of bacterial community. Degradation also significantly increased the relative abundance of Glomeromycota (from 0.17% to 1.53%) and decreased Basidiomycota (from 19.30% to 4.83%) of fungal community. The relative abundance of pathogenic fungi (Didymella and Fusarium) was decreased significantly by degradation. In addition, degradation had a significant impact on putative functionality of soil bacteria related to soil carbon and nitrogen cycling. Our results suggest that soil bacterial community is more sensitive than fungal community in response to degradation in the temperate grassland.

Keywords: degradation; soil microbial; community; temperate grassland; grassland

Journal Title: Journal of Plant Ecology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.