LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and dosimetric verification of 3D customized bolus in head and neck radiotherapy.

Photo by bastroloog from unsplash

The commercial flat bolus cannot form perfect contact with the irregular surface of the patient's skin, resulting in an air gap. The purpose of this study was to evaluate the… Click to show full abstract

The commercial flat bolus cannot form perfect contact with the irregular surface of the patient's skin, resulting in an air gap. The purpose of this study was to evaluate the feasibility of using a 3D customized bolus from silicone rubber. The silicone rubber boluses were studied in basic characteristics. The 3D customized bolus was fabricated at the nose, cheek and neck regions. The point dose and planar dose differences were evaluated by comparing with virtual bolus. The hardness, thickness, density, Hounsfield unit (HU) and dose attenuation of the customized bolus were quite similar to a commercial bolus. When a 3D customized bolus was placed on the RANDO phantom, it can significantly increase buildup region doses and perfectly fit against the irregular surface shape. The average point dose differences of 3D customized bolus were -1.1%, while the commercial bolus plans showed -1.7%. The average gamma results for planar dose differences comparison of 3D customized bolus were 93.9%, while the commercial bolus plans were reduced to 91.9%. Overall, A silicone rubber bolus produced the feasible dosimetric properties and could save cost compared to a commercial bolus. The 3D printed customized bolus is a good buildup material and could potentially replace and improve treatment efficiency.

Keywords: bolus; customized bolus; silicone rubber; dose differences; commercial bolus; neck

Journal Title: Journal of radiation research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.