Plant amino acid transporters (AATs) regulate not only long-distance transport and reallocation of nitrogen (N) from source to sink organs, but also amount of amino acids in leaves hijacked by… Click to show full abstract
Plant amino acid transporters (AATs) regulate not only long-distance transport and reallocation of nitrogen (N) from source to sink organs, but also amount of amino acids in leaves hijacked by invaded pathogens. However, the function of AATs in plant defense responses to pathogen infection remains unknown. In this study, we found that rice amino acid transporter gene OsLHT1 was expressed in leaves and up-regulated by maturing, N starvation and inoculation of blast fungus Magnaporthe oryzae. Knockout of OsLHT1 resulted in development stage- and N supply-dependent premature senescence of leaves at vegetative growth stage. In comparison to wild type, Oslht1 mutant lines showed sustained rusty red spots on fully mature leaf blades irrespective of N supply levels. Notably, no relationship between the severity of leaf rusty red spots and concentration of total N or amino acids was found in Oslht1 mutants at different developmental stages. Disruption of OsLHT1 altered transport and metabolism of amino acids and biosynthesis of flavones and flavonoids, enhanced expression of jasmonic acid- and salicylic acid-related defense genes and production of jasmonic acid and salicylic acid, accumulation of reactive oxygen species. OsLHT1 inactivation dramatically prevented the leaf invasion of M. oryzae, the hemi-biotrophic ascomycete fungus. Overall, these results establish a module connecting the activity of amino acid transporter with leaf metabolism and defense to rice blast fungus.
               
Click one of the above tabs to view related content.