OBJECTIVE The aim of this study was to compare metagenomic next-generation sequencing (mNGS) with other methods, including Xpert MTB/RIF, Mycobacterium tuberculosis (MTB) culture, and acid-fast bacillus (AFB) staining in the… Click to show full abstract
OBJECTIVE The aim of this study was to compare metagenomic next-generation sequencing (mNGS) with other methods, including Xpert MTB/RIF, Mycobacterium tuberculosis (MTB) culture, and acid-fast bacillus (AFB) staining in the diagnosis of pulmonary tuberculosis (PTB) using bronchoalveolar lavage fluid (BALF). METHODS The data of 186 patients with suspected PTB were retrospectively collected from January 2020 to May 2021 at Tongji Hospital. BALF samples were collected from all patients and analyzed using AFB staining, MTB culture, Xpert MTB/RIF, and mNGS. RESULTS Of the 186 patients, 38 patients were ultimately diagnosed as PTB. Metagenomic next-generation sequencing exhibited a sensitivity of 78.95%, which was higher than AFB staining (27.59%) and MTB culture (44.12%) but similar to Xpert MTB/RIF (72.73%). Utilization of combined methods demonstrates improvement for PTB diagnosis. In support of this, the area under the receiver operating characteristic curve for the combination of mNGS and MTB culture (0.933, 95% CI: 0.871, 0.995) was larger than those of mNGS, Xpert MTB/RIF, MTB culture, and the combination of Xpert MTB/RIF and MTB culture. CONCLUSION The sensitivity of mNGS in the diagnosis of PTB using BALF specimen is similar to Xpert MTB/RIF. Metagenomic next-generation sequencing in combination with MTB culture may further improve the diagnosis of pulmonary tuberculosis.
               
Click one of the above tabs to view related content.