LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Racemization rate and biomolecular characterization of D-serine synthesizing bacteria Bacillus tequilensis A1C1.

Photo by markusspiske from unsplash

D-amino acids, the important components of the bacterial cell walls, are valuable molecular and genetic markers of bacterial-derived organic material in the environment. D-serine, a racemization product of L-serine is… Click to show full abstract

D-amino acids, the important components of the bacterial cell walls, are valuable molecular and genetic markers of bacterial-derived organic material in the environment. D-serine, a racemization product of L-serine is one such amino acid present in various prokaryotes and eukaryotes. It is a well-recognized regulator of various activities in the human nervous system. In plants, it has a role in the nitrogen cycle regulation and pollen tube growth. Serine enantiomers are present in different concentrations and few bacterial strains are reported to contribute to D-serine in the environment. During the present study, soil samples from different places in North India were collected and processed to isolate and screen the bacteria on M9 minimal media (Himedia) for D-serine synthesis. Thin-layer chromatography (TLC Silica gel 60 F 254 (20 × 20 cm, Merck, Darmstadt, Germany) and Mass spectroscopic analysis (Bruker MICROTOF II spectrometer) studies, etc were performed. D-serine-producing isolates were characterized as per standard procedures. Bacterial isolate A1C1 with maximum D-serine (0.919 ± 0.02 nM) synthesis under optimal growth conditions (37°C ± 0.5, 150 ± 0.5 RPM, and 7 ± 0.5 pH) was identified as Bacillus tequilensis based on 16sRNA sequencing. The isolate could be a valuable serine racemization tool for various industrial and environmental applications.

Keywords: bacillus tequilensis; racemization rate; biomolecular characterization; serine; rate biomolecular; racemization

Journal Title: Letters in applied microbiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.