LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reactive oxygen and nitrogen species are crucial for the antifungal activity of amorolfine and ciclopirox olamine against the dermatophyte Trichophyton interdigitale.

Photo by enginakyurt from unsplash

Onychomycosis is a nail infection caused by Trichophyton interdigitale and other fungi, which can be treated with topical amorolfine (AMR) and ciclopirox olamine (CPX). Although these drugs are widely used,… Click to show full abstract

Onychomycosis is a nail infection caused by Trichophyton interdigitale and other fungi, which can be treated with topical amorolfine (AMR) and ciclopirox olamine (CPX). Although these drugs are widely used, little is known about the role of reactive oxygen (ROS) and nitrogen (RNS) in their mechanism of action. Aiming to better understand the effects of AMR and CPX in dermatophytes, we evaluated whether they act through the production of ROS and peroxynitrite (PRN). We tested a set of strains, all susceptible to AMR and CPX, and these antifungals significantly reduced T. interdigitale viability within 24 hours. This effect occurred concomitantly with reduced ergosterol, increased production of ROS and PRN, and consequently increased lipid peroxidation. Together, these mechanisms lead to cell damage and fungal death. These fungicidal effects were abolished when PRN and superoxide scavengers were used in the assays, demonstrating the role of these species in the mechanism of action. We also studied the antioxidant system when T. interdigitale was exposed to AMR and CPX. Interestingly, superoxide dismutase and catalase inhibition lead to altered ROS and PRN production, lipid peroxidation, and ergosterol levels. In fact, the combination of AMR or CPX with a superoxide dismutase inhibitor was antagonistic. Together, these data demonstrate the importance of ROS and PRN in the antifungal action of AMR and CPX against the evaluated T. interdigitale strains.

Keywords: amr cpx; reactive oxygen; cpx; trichophyton interdigitale; ciclopirox olamine; amorolfine

Journal Title: Medical mycology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.