LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiband observation of LIGO/Virgo binary black hole mergers in the gravitational-wave transient catalog GWTC-1

Photo from wikipedia

The Advanced LIGO and Virgo detectors opened a new era to study black holes (BHs) in our Universe. A population of stellar-mass binary BHs (BBHs) are discovered to be heavier… Click to show full abstract

The Advanced LIGO and Virgo detectors opened a new era to study black holes (BHs) in our Universe. A population of stellar-mass binary BHs (BBHs) are discovered to be heavier than previously expected. These heavy BBHs provide us an opportunity to achieve multiband observation with ground-based and space-based gravitational-wave (GW) detectors. In this work, we use BBHs discovered by the LIGO/Virgo Collaboration as indubitable examples, and study in great detail the prospects for multiband observation with GW detectors in the near future. We apply the Fisher matrix to spinning, non-precessing inspiral-merger-ringdown waveforms, while taking the motion of space-based GW detectors fully into account. Our analysis shows that, detectors with decihertz sensitivity are expected to log stellar-mass BBH signals with very large signal-to-noise ratio, and provide accurate parameter estimation, including the sky location and time to coalescence. Furthermore, the combination of multiple detectors will achieve unprecedented measurement of BBH properties. As an explicit example, we present the multiband sensitivity to the generic dipole radiation for BHs, which is vastly important for the equivalence principle in the foundation of gravitation, in particular for those theories that predict curvature-induced scalarization of BHs.

Keywords: multiband observation; gravitational wave; ligo virgo

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.