LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The origins of nearly coplanar, non-resonant systems of close-in super-Earths

Photo from wikipedia

Some systems of close-in "super-Earths" contain five or more planets on non-resonant but compact and nearly coplanar orbits. The Kepler-11 system is an iconic representative of this class of system.… Click to show full abstract

Some systems of close-in "super-Earths" contain five or more planets on non-resonant but compact and nearly coplanar orbits. The Kepler-11 system is an iconic representative of this class of system. It is challenging to explain their origins given that planet-disk interactions are thought to be essential to maintain such a high degree of coplanarity, yet these same interactions invariably cause planets to migrate into chains of mean motion resonances. Here we mine a large dataset of dynamical simulations of super-Earth formation by migration. These simulations match the observed period ratio distribution as long as the vast majority of planet pairs in resonance become dynamically unstable. When instabilities take place resonances are broken during a late phase of giant impacts, and typical surviving systems have planet pairs with significant mutual orbital inclinations. However, a subset of our unstable simulations matches the Kepler-11 system in terms of coplanarity, compactness, planet-multiplicity and non-resonant state. This subset have dynamical instability phases typically much shorter than ordinary systems. Unstable systems may keep a high degree of coplanarity post-instability if planets collide at very low orbital inclinations ($\lesssim1^\circ$) or if collisions promote efficient damping of orbital inclinations. If planetary scattering during the instability takes place at low orbital inclinations ($\text{i}\lesssim1^\circ$), orbital inclinations are barely increased by encounters before planets collide.When planetary scattering pumps orbital inclinations to higher values ($\gtrsim 1^\circ$) planets tend to collide at higher mutual orbital inclinations, but depending on the geometry of collisions mergers' orbital inclinations may be efficiently damped. Each of these formation pathways can produce analogues to the Kepler-11 system.

Keywords: systems close; close super; super earths; non resonant; orbital inclinations; nearly coplanar

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.