LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Are the carriers of diffuse interstellar bands and extended red emission the same?

Photo from academic.microsoft.com

We report the first spectroscopic observations of a background star seen through the region between the ionization front and the dissociation front of the nebula IC 63. This photodissociation region… Click to show full abstract

We report the first spectroscopic observations of a background star seen through the region between the ionization front and the dissociation front of the nebula IC 63. This photodissociation region (PDR) exhibits intense extended red emission (ERE) attributed to fluorescence by large molecules/ions. We detected strong diffuse interstellar bands (DIB) in the stellar spectrum, including an exceptionally strong and broad DIB at $\lambda$4428. The detection of strong DIBs in association with ERE could be consistent with the suggestion that the carriers of DIBs and ERE are identical. The likely ERE process is recurrent fluorescence, enabled by inverse internal conversions from highly excited vibrational levels of the ground state to low-lying electronic states with subsequent transitions to ground. This provides a path to rapid radiative cooling for molecules/molecular ions, greatly enhancing their ability to survive in a strongly irradiated environment. The ratio of the equivalent widths (EW) of DIBs $\lambda$5797 and $\lambda$5780 in IC 63 is the same as that observed in the low-density interstellar medium with UV interstellar radiation fields (ISRF) weaker by at least two orders of magnitude. This falsifies suggestions that the ratio of these two DIBs can serve as a measure of the UV strength of the ISRF. Observations of the nebular spectrum of the PDR of IC 63 at locations immediately adjacent to where DIBs were detected failed to reveal any presence of sharp emission features seen in the spectrum of the Red Rectangle nebula. This casts doubts upon proposals that the carriers of these features are the same as those of DIBs seen at slightly shorter wavelengths.

Keywords: interstellar bands; carriers diffuse; red emission; diffuse interstellar; extended red; emission

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.