LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How do central and satellite galaxies quench? – Insights from spatially resolved spectroscopy in the MaNGA survey

Photo from wikipedia

We investigate how star formation quenching proceeds within central and satellite galaxies using spatially resolved spectroscopy from the SDSS-IV MaNGA DR15. We adopt a complete sample of star formation rate… Click to show full abstract

We investigate how star formation quenching proceeds within central and satellite galaxies using spatially resolved spectroscopy from the SDSS-IV MaNGA DR15. We adopt a complete sample of star formation rate surface densities ($\Sigma_{\rm SFR}$), derived in Bluck et al. (2020), to compute the distance at which each spaxel resides from the resolved star forming main sequence ($\Sigma_{\rm SFR} - \Sigma_*$ relation): $\Delta \Sigma_{\rm SFR}$. We study galaxy radial profiles in $\Delta \Sigma_{\rm SFR}$, and luminosity weighted stellar age (${\rm Age_L}$), split by a variety of intrinsic and environmental parameters. Via several statistical analyses, we establish that the quenching of central galaxies is governed by intrinsic parameters, with central velocity dispersion ($\sigma_c$) being the most important single parameter. High mass satellites quench in a very similar manner to centrals. Conversely, low mass satellite quenching is governed primarily by environmental parameters, with local galaxy over-density ($\delta_5$) being the most important single parameter. Utilising the empirical $M_{BH}$ - $\sigma_c$ relation, we estimate that quenching via AGN feedback must occur at $M_{BH} \geq 10^{6.5-7.5} M_{\odot}$, and is marked by steeply rising $\Delta \Sigma_{\rm SFR}$ radial profiles in the green valley, indicating `inside-out' quenching. On the other hand, environmental quenching occurs at over-densities of 10 - 30 times the average galaxy density at z$\sim$0.1, and is marked by steeply declining $\Delta \Sigma_{\rm SFR}$ profiles, indicating `outside-in' quenching. Finally, through an analysis of stellar metallicities, we conclude that both intrinsic and environmental quenching must incorporate significant starvation of gas supply.

Keywords: satellite galaxies; sigma; central satellite; spectroscopy; sigma sfr

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.