LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ATLASGAL – relationship between dense star-forming clumps and interstellar masers

Photo from wikipedia

We have used catalogues from several Galactic plane surveys and dedicated observations toinvestigate the relationship between various maser species and Galactic star forming clumps, as identified by the ATLASGAL survey.… Click to show full abstract

We have used catalogues from several Galactic plane surveys and dedicated observations toinvestigate the relationship between various maser species and Galactic star forming clumps, as identified by the ATLASGAL survey. The maser transitions of interest are the 6.7 &12.2 GHz methanol masers, 22.2 GHz water masers, and the masers emitting in the fourground-state hyperfine structure transitions of hydroxyl. We find clump association rates for the water, hydroxyl and methanol masers to be 56, 39 and 82 per cent respectively, within the Galactic longitude range of 60◦ > ` > −60◦. We investigate the differences in physical parameters between maser associated clumps and the full ATLASGAL sample, and find that clumps coincident with maser emission are more compact with increased densities and luminosities. However, we find the physical conditions within the clumps are similar for the different maser species. A volume density threshold of n(H2) > 104.1 cm−3 for the 6.7 GHz methanol maser found in our previous study is shown to be consistent across for all maser species investigated. We find limits that are required for the production of maser emission to be 500 L and 6 M respectively. The evolutionary phase of maser associated clumps is investigated using the L/M ratio of clumps coincident with maser emission, and these have similar L/M ranges (∼ 100.2 − 102.7 L /M ) regardless of the associated transitions. This implies that the conditions required for the production of maser emission only occur during a relatively narrow period during a star’s evolution. Lower limits of the statistical lifetimes for each maser species are derived, ranging from ∼ 0.4 − 2×104 yrs and are in good agreement with the “straw man” evolutionary model previously presented.

Keywords: maser emission; maser species; maser; star forming; forming clumps; star

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.