LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep model simulation of polar vortices in gas giant atmospheres

Photo from wikipedia

The Cassini and Juno probes have revealed large coherent cyclonic vortices in the polar regions of Saturn and Jupiter, a dramatic contrast from the east-west banded jet structure seen at… Click to show full abstract

The Cassini and Juno probes have revealed large coherent cyclonic vortices in the polar regions of Saturn and Jupiter, a dramatic contrast from the east-west banded jet structure seen at lower latitudes. Debate has centered on whether the jets are shallow, or extend to greater depths in the planetary envelope. Recent experiments and observations have demonstrated the relevance of deep convection models to a successful explanation of jet structure and cyclonic coherent vortices away from the polar regions have been simulated recently including an additional stratified shallow layer. Here we present new convective models able to produce long-lived polar vortices. Using simulation parameters relevant for giant planet atmospheres we find flow regimes that are in agreement with geostrophic turbulence (GT) theory in rotating convection for the formation of large scale coherent structures via an upscale energy transfer fully three-dimensional. Our simulations generate polar characteristics qualitatively similar to those seen by Juno and Cassini: they match the structure of cyclonic vortices seen on Jupiter; or can account for the existence of a strong polar vortex extending downwards to lower latitudes with a marked spiral morphology and the hexagonal pattern seen on Saturn. Our findings indicate that these vortices can be generated deep in the planetary interior. A transition differentiating these two polar flows regimes is described, interpreted in terms of different force balances and compared with previous shallow atmospheric models which characterised polar vortex dynamics in giant planets. In addition, the heat transport properties are investigated confirming recent scaling laws obtained in the context of reduced models of GT.

Keywords: simulation polar; deep model; vortices gas; polar vortices; simulation; model simulation

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.