LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The nearby spiral density-wave structure of the Galaxy: line-of-sight velocities of the Gaia DR2 main-sequence A, F, G, and K stars

Photo from wikipedia

Distances and velocities of $\approx \!2400\, 000$ main-sequence A, F, G, and K stars are collected from the second data release of ESA's Gaia astrometric mission. This material is analysed… Click to show full abstract

Distances and velocities of $\approx \!2400\, 000$ main-sequence A, F, G, and K stars are collected from the second data release of ESA's Gaia astrometric mission. This material is analysed to find evidence of radial and azimuthal systematic non-circular motions of stars in the solar neighbourhood on the assumption that the system is subject to spiral density waves (those produced by a spontaneous disturbance, a central bar, or an external companion), developing in the Galactic disc. Data analysis of line-of-sight velocities of $\approx \!1500\, 000$ stars selected within 2 kpc from the Sun and 500 pc from the Galactic mid-plane with distance accuracies of <10 per cent makes evident that a radial wavelength of the wave pattern is 1.1–1.6 kpc and a phase of the wave at the Sun’s location in the Galaxy is 55°–95°. Respectively, the Sun is situated at the inner edge of the nearest Orion spiral arm segment. Thus, the local Orion arm is a part of a predominant density-wave structure of the system. The spiral structure of the Galaxy has an oscillating nature corresponding to a concept of the Lin–Shu-type moderately growing in amplitude, tightly wound, and rigidly rotating density waves.

Keywords: galaxy; sequence stars; spiral density; main sequence; density; structure

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.