LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory

Photo by nampoh from unsplash

We present measurements of the local core-collapse supernova (CCSN) rate using SN discoveries from the Palomar Transient Factory (PTF). We use a Monte Carlo simulation of hundreds of millions of… Click to show full abstract

We present measurements of the local core-collapse supernova (CCSN) rate using SN discoveries from the Palomar Transient Factory (PTF). We use a Monte Carlo simulation of hundreds of millions of SN light-curve realizations coupled with the detailed PTF survey detection efficiencies to forward model the SN rates in PTF. Using a sample of 86 CCSNe, including 26 stripped-envelope SNe (SESNe), we show that the overall CCSN volumetric rate is $r^\mathrm{CC}_v=9.10_{-1.27}^{+1.56}\times 10^{-5}\, \text{SNe yr}^{-1}\, \text{Mpc}^{-3}\, h_{70}^{3}$ at 〈z〉 = 0.028, and the SESN volumetric rate is $r^\mathrm{SE}_v=2.41_{-0.64}^{+0.81}\times 10^{-5}\, \text{SNe yr}^{-1}\, \text{Mpc}^{-3}\, h_{70}^{3}$. We further measure a volumetric rate for hydrogen-free superluminous SNe (SLSNe-I) using eight events at z ≤ 0.2 of $r^\mathrm{SLSN-I}_v=35_{-13}^{+25}\, \text{SNe yr}^{-1}\text{Gpc}^{-3}\, h_{70}^{3}$, which represents the most precise SLSN-I rate measurement to date. Using a simple cosmic star formation history to adjust these volumetric rate measurements to the same redshift, we measure a local ratio of SLSN-I to SESN of ${\sim}1/810^{+1500}_{-94}$, and of SLSN-I to all CCSN types of ${\sim}1/3500^{+2800}_{-720}$. However, using host galaxy stellar mass as a proxy for metallicity, we also show that this ratio is strongly metallicity dependent: in low-mass (logM* < 9.5 M⊙) galaxies, which are the only environments that host SLSN-I in our sample, we measure an SLSN-I to SESN fraction of $1/300^{+380}_{-170}$ and $1/1700^{+1800}_{-720}$ for all CCSN. We further investigate the SN rates a function of host galaxy stellar mass, and show that the specific rates of all CCSNe decrease with increasing stellar mass.

Keywords: volumetric rate; transient factory; slsn; rate; palomar transient; core collapse

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.