LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Precise Photometric Ratio via Laser Excitation of the Sodium Layer – I. One-photon Excitation Using 342.78 nm Light

Photo from wikipedia

The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength… Click to show full abstract

The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved at upcoming survey telescopes, such as at the Vera Rubin Observatory (VRO), via a laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power laser, this excitation will produce an artificial star, which we term a “laser photometric ratio star” (LPRS) of de-excitation light in the mesosphere at wavelengths in vacuum of 589.16 nm, 589.76 nm, 818.55 nm, and 819.70 nm, with the sum of the numbers of 589.16 nm and 589.76 nm photons produced by this process equal to the sum of the numbers of 818.55 nm and 819.70 nm photons, establishing a precise calibration ratio between, for example, the VRO r and z filters. This technique can thus provide a novel mechanism for establishing a spectrophotometric calibration ratio of unprecedented precision for upcoming telescopic observations across astronomy and atmospheric physics; thus greatly improving the performance of upcoming measurements of dark energy parameters using type Ia supernovae. The second paper of this pair describes an alternative technique to achieve a similar, but brighter, LPRS than the technique described in this paper, by using two lasers near resonances at 589.16 nm and 819.71 nm, rather than the single 342.78 nm on-resonance laser technique described in this paper.

Keywords: laser; laser excitation; photometric ratio; via laser; excitation

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.