LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The VMC survey – XLIII. The spatially resolved star formation history across the Large Magellanic Cloud

Photo from wikipedia

We derive the spatially resolved star formation history (SFH) for a 96 deg2 area across the main body of the Large Magellanic Cloud (LMC), using the near-infrared photometry from the VISTA… Click to show full abstract

We derive the spatially resolved star formation history (SFH) for a 96 deg2 area across the main body of the Large Magellanic Cloud (LMC), using the near-infrared photometry from the VISTA survey of the Magellanic Clouds (VMC). The data and analyses are characterized by a great degree of homogeneity and a low sensitivity to the interstellar extinction. 756 subregions of size 0.125 deg2 – corresponding to projected sizes of about $296\times 322\, \mathrm{pc}^{2}$ in the LMC – are analysed. The resulting SFH maps, with typical resolution of 0.2–0.3 dex in logarithm of age, reveal main features in the LMC disc at different ages: the patchy star formation at recent ages, the concentration of star formation on three spiral arms and on the Bar up to ages of ∼1.6 Gyr, and the wider and smoother distribution of older populations. The period of most intense star formation occurred roughly between 4 and 0.5 Gyr ago, at rates of $\sim \!0.3\, \mbox{$\mathrm{M}_{\odot }$}\mathrm{yr}^{-1}$. We compare young and old star formation rates with the observed numbers of RR Lyrae and Cepheids. We also derive a mean extinction and mean distance for every subregion, and the plane that best describes the spatial distribution of the mean distances. Our results cover an area about 50 per cent larger than the classical SFH maps derived from optical data. Main differences with respect to those maps are lower star formation rates at young ages, and a main peak of star formation being identified at ages slightly younger than 1 Gyr.

Keywords: spatially resolved; formation; star formation; resolved star; formation history

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.