LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Primordial obliquities of brown dwarfs and super-Jupiters from fragmenting gravito-turbulent discs

Photo from wikipedia

Super-Jupiters, brown dwarfs, and stars can form from the collapse of self-gravitating discs. Such discs are turbulent, with flocculent spiral arms accelerating gas to transonic speeds horizontally and vertically. Objects… Click to show full abstract

Super-Jupiters, brown dwarfs, and stars can form from the collapse of self-gravitating discs. Such discs are turbulent, with flocculent spiral arms accelerating gas to transonic speeds horizontally and vertically. Objects that fragment from gravito-turbulent discs should spin with a wide range of directions, reflecting the random orientations of their parent eddies. We show by direct numerical simulation that obliquities of newly collapsed fragments can range up to 45○. Subsequent collisions between fragments can further alter the obliquity distribution, up to 90○ or down to near-zero. The large obliquities of newly discovered super-Jupiters on wide orbits around young stars may be gravito-turbulent in origin. Obliquely spinning fragments are born on orbits that may be inclined relative to their parent discs by up to 20○, and gravitationally stir leftover material to many times the pre-fragmentation disc thickness.

Keywords: brown dwarfs; super jupiters; primordial obliquities; turbulent discs; gravito turbulent

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.