LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stellar-mass microlensing of gravitational waves

Photo from wikipedia

When gravitational waves pass through the nuclear star clusters of galactic lenses, they may be microlensed by the stars. Such microlensing can cause potentially observable beating patterns on the waveform… Click to show full abstract

When gravitational waves pass through the nuclear star clusters of galactic lenses, they may be microlensed by the stars. Such microlensing can cause potentially observable beating patterns on the waveform due to waveform superposition and magnify the signal. On the one hand, the beating patterns and magnification could lead to the first detection of a microlensed gravitational wave. On the other hand, microlensing introduces a systematic error in strong lensing use-cases, such as localization and cosmography studies. We show that diffraction effects are important when we consider GWs in the LIGO frequency band lensed by objects with masses $\lesssim 100 \, \rm M_\odot$. We also show that the galaxy hosting the microlenses changes the lensing configuration qualitatively, so we cannot treat the microlenses as isolated point mass lenses when strong lensing is involved. We find that for stellar lenses with masses $\sim 1 \, \rm M_\odot$, diffraction effects significantly suppress the microlensing magnification. Thus, our results suggest that gravitational waves lensed by typical galaxy or galaxy cluster lenses may offer a relatively clean environment to study the lens system, free of contamination by stellar lenses. We discuss potential implications for the strong lensing science case. More complicated microlensing configurations will require further study.

Keywords: microlensing gravitational; strong lensing; gravitational waves; mass; stellar mass; mass microlensing

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.