LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling synchrotron self-Compton and Klein–Nishina effects in gamma-ray burst afterglows

Photo from wikipedia

We present an implementation of a self-consistent way of modelling synchrotron self-Compton (SSC) effects in gamma-ray burst afterglows, with and without approximated Klein–Nishina suppressed scattering for the afterglow modelling code… Click to show full abstract

We present an implementation of a self-consistent way of modelling synchrotron self-Compton (SSC) effects in gamma-ray burst afterglows, with and without approximated Klein–Nishina suppressed scattering for the afterglow modelling code boxfit, which is currently based on pure synchrotron emission. We discuss the changes in spectral shape and evolution due to SSC effects, and comment on how these changes affect physical parameters derived from broad-band modelling. We show that SSC effects can have a profound impact on the shape of the X-ray light curve using simulations including these effects. This leads to data that cannot be simultaneously fit well in both the X-ray and radio bands when considering synchrotron-only fits, and an inability to recover the correct physical parameters, with some fitted parameters deviating orders of magnitude from the simulated input parameters. This may have a significant impact on the physical parameter distributions based on previous broad-band modelling efforts.

Keywords: gamma ray; modelling synchrotron; ray burst; effects gamma; self compton; synchrotron self

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.