LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Giant radio galaxies in the LoTSS Boötes deep field

Photo from wikipedia

Giant radio galaxies (GRGs) are radio galaxies that have projected linear extents of more than 700 kpc or 1 Mpc, depending on definition. We have carried out a careful visual inspection… Click to show full abstract

Giant radio galaxies (GRGs) are radio galaxies that have projected linear extents of more than 700 kpc or 1 Mpc, depending on definition. We have carried out a careful visual inspection in search of GRGs of the Boötes LOFAR Deep Field (BLDF) image at 150 MHz. We identified 74 GRGs with a projected size larger than 0.7 Mpc of which 38 are larger than 1 Mpc. The resulting GRG sky density is about 2.8 (1.43) GRGs per square degree for GRGs with linear size larger than 0.7 (1) Mpc. We studied their radio properties and the accretion state of the host galaxies using deep optical and infrared survey data and determined flux densities for these GRGs from available survey images at both 54 MHz and 1.4 GHz to obtain integrated radio spectral indices. We show the location of the GRGs in the P-D diagram. The accretion mode on to the central black holes of the GRG hosts is radiatively inefficient suggesting that the central engines are not undergoing massive accretion at the time of the emission. Interestingly, 14 out of 35 GRGs for which optical spectra are available show a moderate star formation rate (10-100 $\rm M_{\odot }~yr^{-1}$). Based on the number density of optical galaxies taken from the DESI DR9 photometric redshift catalogue, we found no significant differences between the environments of GRGs and other radio galaxies, at least for redshift up to z = 0.7.

Keywords: giant radio; grgs; radio galaxies; deep field; radio

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.